

S. Stone Syracuse Univ. May 2003

Heavy Quark

Physics

Far too much interesting Material to include in 40 min. Apologies in advance.

Physics Goals

- ◆Discover, or help interpret, New Physics found elsewhere using b & c decays There is New Physics out there: Standard Model is violated by the Baryon Asymmetry of Universe & by Dark Matter
- ◆ Measure Standard Model parameters, the "fundamental constants" revealed to us by studying Weak interactions
- Understand QCD; necessary to interpret CKM measurements

The Basics: Quark Mixing & the CKM Matrix

$$\mathbf{u} \begin{pmatrix} \mathbf{d} & \mathbf{s} & \mathbf{b} \\ 1 - \frac{1}{2}\lambda^{2} & \lambda & A\lambda^{3} \left(\rho - i\eta \left(1 - \frac{1}{2}\lambda^{2} \right) \right) \end{pmatrix} \qquad \mathbf{mass}$$

$$\mathbf{V} = \mathbf{C} \begin{pmatrix} -\lambda & 1 - \frac{1}{2}\lambda^{2} - i\eta A^{2}\lambda^{4} & A\lambda^{2} \left(1 + i\eta \lambda^{2} \right) \\ \mathbf{t} & A\lambda^{3} \left(1 - \rho - i\eta \right) & -A\lambda^{2} & 1 \end{pmatrix} \qquad \mathbf{m}$$

$$\mathbf{a}$$

$$\mathbf{s}$$

- A, λ , ρ and η are in the Standard Model fundamental constants of nature like G, or α_{EM}
- \bullet η multiplies i and is responsible for CP violation
- We know $\lambda = 0.22 (V_{us})$, A~0.8; constraints on $\rho \& \eta$

The 6 CKM Triangles

- ◆ From Unitarity
- "ds" indicatesrows orcolumns used

All of The CKM Phases

• The CKM matrix can be expressed in terms of 4 phases, rather than, for example λ , A, ρ , η :

$$\beta = \arg \left(-\frac{V_{tb}V_{td}^*}{V_{cb}V_{cd}^*} \right) \qquad \gamma = \arg \left(-\frac{V_{ub}^*V_{ud}}{V_{cb}^*V_{cd}} \right)$$

$$\chi = \arg \left(-\frac{V_{cs}^* V_{cb}}{V_{ts}^* V_{tb}} \right) \qquad \chi' = \arg \left(-\frac{V_{ud}^* V_{us}}{V_{cd}^* V_{cs}} \right)$$

- $\alpha = \pi (\beta + \gamma)$, not independent
- α , β & γ probably large, χ small ~1°, χ' smaller

Required Measurements

- $|V_{ub}/V_{cb}|^2 = (\rho^2 + \eta^2)/\lambda^2$ use semileptonic B decays
- ♦ Δm_d and Δm_s are measured directly in B_d and B_s mixing. $\frac{b}{\bar{d}}$ t,c,u W t,c,u \bar{b} \bar{B}^o

There is a limit on the ratio which is a function of V_{td}/V_{ts} and depends on $(1-\rho)^2+\eta^2$

- ε_K is a measure of CP violation in K_L decays, a function of η , ρ and A
- Asymmetries in decay rates into CP eigenstates f (or other states) measure the angles α , β , γ & χ , sometimes with little or no theoretical model errors

|V_{ub}| a case study

- Use semileptonic decays
 - ◆ c >> u, so difficult exp
 - ◆ Also difficult theoretically
- Three approaches

- ◆ Make mass cuts on the hadronic system; plot the lepton spectrum. Problems are the systematic errors on the experiment and the theory.
- Exclusive $B \rightarrow \pi \ell \nu$ or $\rho \ell \nu$ decays. Data are still poor as is theory. Eventually Lattice Gauge calculations should be able to remove this problem

V_{ub} from lepton endpoint

- ♦ V_{ub} both overall rate & fraction of leptons in signal region depends on model. Use CLEO b →sγ spectrum to predict shape
- ◆ CLEO: V_{ub} =(4.08±0.34 ±0.44±0.16 ±0.24)x10⁻³
- ♦ BABAR: $V_{ub} = (4.43\pm0.29 \pm0.25\pm0.50 \pm0.35) \times 10^{-3}$ theory errs: V_{ub} formula, using sγ
- ◆ Luke: additional error

>0.6x10⁻³ due to: subleading twist, annihilation

V_{ub} Using Inclusive Leptons

- ◆ ALEPH & DELPHI, OPAL select samples of charm-poor semileptonic decays with a large number of selection criteria
- \bullet Mass < M_D \Rightarrow b \rightarrow u
- ◆ Can they understand $b \rightarrow c\ell\nu$ feedthrough < 1%?
- $|V_{ub}| = (4.09 \pm 0.37 \pm 0.44 \pm 0.34) \times 10^{-3}$

Problem According to Luke

Hadronic Invariant Mass Spectrum for b→u Decay

V_{ub} using reconstructed tags - BABAR

Use fully reconstructed B tags

◆
$$|V_{ub}|$$
 = $(4.52\pm0.31(stat)\pm0.27(sys)$
 $\pm0.40(thy)\pm0.09(pert)$
 $\pm0.27(1/m_b^3)) x 10^{-3}$
Preliminary

V_{ub} from Belle

◆ Two techniques (*Both Preliminary*)

```
"D^{(*)}\ell\nu tag" |V_{ub}| = 5.00 \pm 0.60 \pm 0.23 \pm 0.05 \pm 0.39 \pm 0.36 \times 10^{-3} "\nu reconstruction and Annealing uses Mx < 1.5, q2 > 7" |V_{ub}| = 3.96 \pm 0.17 \pm 0.44 \pm 0.34 \pm 0.26 \pm 0.29 \times 10^{-3} theor.
```


V_{ub} from exclusives: $B \rightarrow \pi \ell \nu \& B \rightarrow \rho \ell \nu$

◆Use detectorhermeticity toreconstruct v

CLEO finds rough q² – distribution

$$\left| \mathbf{V}_{ub} \right| = \left[3.17 \pm 0.17 \Big|_{stat}^{+0.16} \Big|_{sys}^{exp} + 0.53 \Big|_{sys}^{thy} \pm 0.03 \Big|_{plv \ FF}^{theor} \right] \times 10^{-3}$$

BABAR finds

$$|V_{ub}| = \left[3.64 \pm 0.22 \Big|_{stat} \pm 0.03 \Big|_{syst} + 0.39 \Big|_{thy}^{thy} \right] \times 10^{-3}$$

|V_{ub}| Summary

- ◆ All measurements nicely clustered. RMS ~0.3x10⁻³
- However, there are theoretical errors that might all have not been included (see Luke)
- Also previous values may have influenced new values
- Safe to say $|V_{ub}| = (4.0 \pm 1.0) \times 10^{-3}$
- Future:
 - More and better tagged data from B-factories
 - ◆ Lattice calculations

 (unquenched) for exclusives in high q² region

B_d Mixing in the Standard Model

◆Relation between B mixing & CKM elements:

$$x \equiv \frac{\Delta m}{\Gamma} = \frac{G_F^2}{6\pi^2} B_B f_B^2 m_B \tau_B \left| V_{tb}^* V_{td}^* \right|^2 m_t^2 F \left(\frac{m_t^2}{m_W^2} \right) \eta_{QCD}$$

- F is a known function, η_{OCD} ~ 0.8
- ◆B_B and f_B are currently determined only theoretically
 - ♦ in principle, f_B can be measured, but its very difficult, need to measure $B^o \rightarrow \ell \nu$
 - ◆ Current best hope is Lattice QCD

B_s Mixing in the Standard Model

$$\mathbf{x}_{s} \equiv \frac{\Delta m_{s}}{\Gamma_{s}} = \frac{G_{F}^{2}}{6\pi^{2}} B_{B_{S}} f_{B_{S}}^{2} m_{B_{S}} \tau_{B_{S}} \left| V_{tb}^{*} V_{ts}^{*} \right|^{2} m_{t}^{2} F\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right) \eta_{QCD}$$

- ◆ When B_s mixing is measured then we will learn the ratio of V_{td}/V_{ts} which gives the same essential information as B_d mixing alone:
 - $|V_{td}|^2 = A^2 \lambda^4 [(1-\rho)^2 + \eta^2] \alpha 1/f_B B_B^2$
 - $|V_{td}|^2/|V_{ts}|^2=[(1-\rho)^2+\eta^2] \alpha f_{Bs}B_{Bs}^2/f_BB_B^2$
 - Circle in (ρ, η) plane centered at (1,0)

Partially unquenched

◆ Lattice best value for
$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}} = 1.24 \pm 0.04 \pm 0.06$$

Upper limits on Δm_s

- ◆ P(B_S→B_S)=0.5x $\Gamma_S e^{-\Gamma_S t} [1+\cos(\Delta m_S t)]$
- To add exp. it is useful to analyze the data as a function of a test frequency ω
- $g(t)=0.5 \Gamma_S$ $e^{-\Gamma_S t} [1+A\cos(\omega t)]$

Status of $sin(2\beta)$

$$\sin 2\beta = 0.741 \pm 0.067 \pm 0.034 \text{ BABAR}$$

 $\sin 2\beta = 0.719 \pm 0.074 \pm 0.035 \text{ Belle}$
 $\sin 2\beta = 0.73 \pm 0.06 \text{ Average}$

No theoretical uncertainties at this level of error

$$ar{B}^0
ightarrow f_{CP} \ ar{B}^0
ightarrow f_{CP}$$

 $f_{CP} = J/\psi K_s$, $\psi' K_s$, etc..

$$-A_{CP}(\Delta t) = \frac{N_{\overline{B}} - N_B}{N_{\overline{B}} + N_B}$$
$$= \sin(2\beta)\sin(\Delta m_d \Delta t)$$

Current Status

- Constraints on ρ & η from Nir using Hocker et al.
- ◆ Theory parameters exist except in Asymmetry measurements, because we measure hadrons but are trying to extract quark couplings. They are allowed to have equal probability within a restricted but arbitrary range
- Therefore large model dependence for V_{ub}/V_{cb} , ε_K and Δm_d , smaller but significant for Δm_s and virtually none for $\sin(2\beta)$. The level of theoretical uncertainties is arguable

$B^o \rightarrow \pi^+ \pi^-$

♦ In principle, the CP asymmetry in $B^o \rightarrow \pi^+\pi^-$ measures the phase α. However there is a large Penguin term (a "pollution") (CLEO+ BABAR+BELLE): $\mathcal{B}(B^o \rightarrow \pi^+\pi^-) = (4.8 \pm 0.5) \times 10^{-6}$ $\mathcal{B}(B^o \rightarrow K^\pm\pi^\mp) = (18.6 \pm 1.0) \times 10^{-6}$

- $A_{CP}(\Delta t) = S_{\pi\pi} \sin(\Delta m_d \Delta t) C_{\pi\pi} \cos(\Delta m_d \Delta t)$, where $S_{\pi\pi}^2 + C_{\pi\pi}^2 < 1$
- To measure α , use $B^o \rightarrow \rho \pi$ (see Snyder & Quinn PRD 48, 2139 (1993))

Results

Progress on y

 \bullet Best way to measure γ is

♦ Another suggestion is $D^o \rightarrow K^{*\pm}K^{\mp}$ (Grossman, Ligeti & Soffer hep-ph/0210433)

Currently available data

◆Belle signals (also B⁺)

$$A_{1,2} = \frac{B(B^{-} \to D_{1,2}K^{-}) - B(B^{+} \to D_{1,2}K^{+})}{B(B^{-} \to D_{1,2}K^{-}) + B(B^{+} \to D_{1,2}K^{+})}$$

$$= \frac{\pm 2r\sin(\delta)\sin(\gamma)}{1+r^2\pm 2r\cos(\delta)\cos(\gamma)}$$

Where δ is a strong phase &

$$r \equiv \frac{A(B^{-} \rightarrow D^{0}K^{-})}{A(B^{-} \rightarrow D^{0}K^{-})} = \frac{A(b \rightarrow u)}{A(b \rightarrow c)}$$

- These data do not constrain γ
- BABAR has similar results

New Physics Tests

- ◆ We can use CP violating or CP related variables to perform tests for New Physics, or to figure out what is the source of the new physics.
- ◆There are also important methods using Rare Decays, described later
- ◆ These tests can be either generic, where we test for inconsistencies in SM predictions independent of specific non-standard model, or model specific

Generic test: Separate Checks

- ◆ Use different sets of measurement s to define apex of triangle (from Peskin)
- Also have ε_K (CP in K_L system)

Generic Test: Critical Check using χ

- Silva & Wolfenstein (hep-ph/9610208), (Aleksan, Kayser & London), propose a test of the SM, that can reveal new physics; it relies on measuring the angle χ.
 - Can use CP eigenstates to measure χ $B_s \rightarrow J/\psi \eta^{(\prime)}$, $\eta \rightarrow \gamma \gamma$, $\eta' \rightarrow \rho \gamma$
 - Can also use $J/\psi \phi$, but a complicated angular analysis is required
 - The critical check is: $\sin \chi = \lambda^2 \frac{\sin \beta \sin \gamma}{\sin (\beta + \gamma)}$
 - Very sensitive since $\lambda = 0.2205 \pm 0.0018$
 - Since $\chi \sim 1^{\circ}$, need lots of data

Rare b Decays

- New fermion like objects in addition to t, c or u, or new Gauge-like objects
- ♦ Inclusive Rare Decays such as inclusive b→s γ , b→d γ , b→s ℓ ⁺ ℓ ⁻
- ◆Exclusive Rare Decays such as B→ργ, B→K* $\ell^+\ell^-$: Dalitz plot & polarization

Inclusive $b \rightarrow s\gamma$

$$\bullet$$
 CLEO $B(b \rightarrow s\gamma) =$

$$(2.85\pm0.35\pm0.23)$$
x 10^{-4}

◆+ALEPH, Belle & Babar

Average

$$(3.28\pm0.38)$$
x 10^{-4}

Theory

 (3.57 ± 0.30) x 10^{-4}

$$H_{eff} = \frac{4G_{F}}{\sqrt{2}} (V_{tb}V_{ts}^{*}) [c_{7}(m_{b})O_{7} + c_{8}(m_{b})O_{8}]$$

$$O_7 = \frac{e}{16\pi^2} m_b \overline{s}_L \sigma_{\mu\nu} b_R F^{\mu\nu}, O_8 = \frac{1}{4\pi} m_b \overline{s}_L \sigma_{\mu\nu} b_R G^{\mu\nu}$$

$$\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha m_b^5}{32\pi^4} |c_7|^2 |V_{tb}V_{ts}^*|^2 \text{ in lowest order}$$

Implications of $B(b \rightarrow s\gamma)$ measurement

- Measurement is consistent with SM
- Limits on many non-Standard Models: minimal supergravity, supersymmetry, etc...
- ◆ Define ala' Ali et al. $R_i=(c_i^{SM}+c_i^{NP})/c_i^{SM}$; i=7, 8
- Black points indicate various New Physics models (MSSM with MFV)

$$B \rightarrow K^{(*)} \ell^+ \ell^-$$

- ♦ Belle Discovery of $K\ell^+\ell^-$
- ◆ They see Kμ⁺μ⁻
- ◆ $B(B \to K\ell^+\ell^-) =$ $(0.75^{+0.25}_{-0.21} \pm 0.09) \times 10^{-6}$
- ◆ BABAR confirms in Ke⁺e⁻ $B(B \to K\ell^+\ell^-) =$ $(0.78^{+0.24+0.11}_{-0.20-0.18}) \times 10^{-6}$
- Only u.l. on $K^*\ell^+\ell^-$

Entries / $(0.2 \,\mathrm{GeV/c}^2)$

$$B \rightarrow X_s \ell^+ \ell^-$$

♦Belle finds

$$B(b \rightarrow s\ell^+\ell^-)^=$$

$$(6.1\pm1.4^{+1.4}_{-1.1})$$
x10-6

- ♦ Must avoid J/Ψ, Ψ'
- ◆Important for NP

Tests in Specific Models: First Supersymmetry

- ◆ Supersymmetry: In general 80 constants & 43 phases
- ◆ MSSM: 2 phases (Nir, hep-ph/9911321)
- NP in B° mixing: θ_D , B° decay: θ_A , D° mixing: $\phi_{K\pi}$

Process	Quantity	SM	New Physics	Difference ⇒ NP
$B^o \longrightarrow J/\psi K_s$	CP asym	sin(2β)	$\sin 2(\beta + \theta_D)$	
$B^o \rightarrow \phi K_s$	CP asym	sin(2β)	$\sin 2(\beta + \theta_D + \theta_A)$	
$D^o \rightarrow K^- \pi^+$	CP asym	0	$\sim \sin(\phi_{K\pi})$	

CP Asymmetry in $B^o \rightarrow \phi K_s$

- Non-SM contributions
 would interfere with
 suppressed SM loop diagram
- New Physics could show if there is a difference between $\sin(2\beta)$ measured here and $\sin J/\psi$ Ks
- ◆ Measurements: BABAR: -0.18±0.51±0.07

Belle: $-0.73\pm0.64\pm0.22$

Average: -0.38±0.41

 \bullet 2.7 σ away from 0.73 - bears watching, as well other modes

MSSM Predictions from Hinchcliff & Kersting

(hep-ph/0003090)

◆ Contributions to B_s mixing

 $B_s \rightarrow J/\psi \eta$ $\frac{c}{c} \int_{\psi} J/\psi \eta$

CP asymmetry $\approx 0.1 \sin \phi_{\mu} \cos \phi_{A} \sin(\Delta m_{s} t)$, $\sim 10 \text{ x SM}$

Contributions to direct the CP violating decay

relies on finite strong phase shift

Asym=
$$(M_W/m_{squark})^2 \sin(\phi_{\mu})$$
, ~0 in SM

Extra Dimensions – only one

- ◆Extra spatial dimension is compactified at scale 1/R = 250 GeV on up
- ◆ Contributions from Kaluza-Klein modes- Buras, Sprnger & Weiler (hep-ph/0212143) using model of Appelquist, Cheng and Dobrescu (ACD)
- No effect on $|V_{ub}/V_{cb}|$, $\Delta M_d/\Delta M_s$, $\sin(2\beta)$

One Extra Dimension

SO(10)

ala' Chang, Masiero & Murayama hep-ph/0205111

- Large mixing between v_{τ} and v_{μ} (from atmospheric v oscillations) can lead to large mixing between \widetilde{b}_{R} and \widetilde{s}_{R} .
- This does not violate any known measurements
- ◆Leads to large CPV in B_s mixing, deviations from sin(2β) in $B^o \rightarrow \phi$ K_s and changes in the phase γ

Possible Size of New Physics Effects

◆ From Hiller hep-ph/0207121

Revelations about QCD

- BABAR discovery of new narrow $D_s^+\pi^o$ state and CLEO discovery of narrow $D_s^{*+}\pi^o$ state
- Double Charm Baryons
- The $\eta_C(2S)$ and implications for Potential Models (no time)
- ◆ The Upsilon D States (no time)

The $D_s^{\dagger}\pi^o$ state

◆ "Narrow" state, mass 2316.8±0.4±3.0 MeV width consistent with mass resolution ~9 MeV found by BABAR

- Lighter than most potential models
- ◆ What can this be?
 - ◆ DK molecule Barnes, Close & Lipkin hep-ph/0305025
 - ◆ "Ordinary" excited cs̄ states: D**, narrow because isospin is violated in the decay. Use HQET + chiral symmetry to explain. Bardeen, Eichten & Hill hep-ph/0305049
 - Etc...

D_s⁺** States

- ◆ D_s** predicted J^p: 0⁺, 1⁺, 1⁺ & 2⁺. One 1⁺ & 2⁺ seen. Others predicted to be above DK threshold and have large ~200 MeV widths, but this state is way below DK threshold
- The $D_s^+\pi^o$ decay from an initial $c\bar{s}$ state violates isospin, this suppresses the decay width & makes it narrow. So the low mass ensures the narrow width
- Decays into $D_s^+ \gamma$, $D_s^+ * \gamma$ and $D_s^+ \pi^+ \pi^-$ are not seen. If the 2317 were 1⁺ then it could decay strongly into $D_s^+ \pi^+ \pi^-$ but it cannot if it's 0⁺

CLEO Sees Two Mass Peaks

Feed Down: D_s(2460) Signal, Reconstructed as D_s(2317)

Unfolding the rates

- ◆ We are dealing with two narrow resonances which can reflect (or feed) into one another
- ◆From the data and the MC rates can be unfolded

Upper Limits on other $D_s(2317)$ modes

Mode	e Yield	Efficiency(%	90% c	<u>l Theory</u>
$D_s\pi^o$	150±49	13.1±0.7	-	1
$D_{\rm s}\gamma$	-22±13	18.4±0.9	< 0.057	0
$D_s^*\gamma$	-2.0±4.1	5.3±0.4	< 0.078	0.08
$D_s\pi^+\pi^-$	1.6±2.6	19.6±0.7	< 0.020	0

- Corrected for feed across
- ◆Theory: Bardeen, Eichten and Hill

Belle Confirms Both States

Conclusions on D_s**'s

- ◆ CLEO confirms the BABAR discovered narrow cs̄ state near 2317 MeV, measures mD_s(2320)-mD_s =350.4±1.2±1.0 MeV
- ◆ CLEO has observed a new narrow state near 2463 $mD_s(2463)-mD_s*=351.6\pm1.7\pm1.0 \text{ MeV}$
- ◆ Belle confirms both states
- The mass splittings are consistent with being equal $(1.2\pm2.1 \text{ MeV})$ as predicted by BEH if these are the 0^+ & 1^+ states
- ◆ The BEH model couples HQET with Chiral Symmetry and makes predictions about masses, widths and decay modes.
 - ◆ These results provide powerful evidence for this model
 - ♦ Seen modes and u.l. are consistent with these assignment; except $1^+ \rightarrow D_s \pi^+ \pi^-$ is above threshold for decay, predicted to be 19% but is limited to <8.1% @ 90% c. l.

Selex: Two Isodoublets of Doubly Charmed Baryons

The Future

- ◆Now & near term
 - Continuation of excellent new results from Belle & BABAR
 - ◆B_s physics, especially mixing from CDF & D0
 - \bullet CLEO-c will start taking data in October on ψ''
- ◆LHC era
 - ◆Some b physics from ATLAS & CMS
 - ◆Dedicated hadronic b experiments: LHCb & BTeV (at the Tevatron) enhanced sensitivity to new physics

Summary of Required Model Independent Measurements for CKM tests

Physics	Decay Mode	Vertex	K/π	γ det	Decay
Quantity		Trigger	sep	·	time σ
$\sin(2\alpha)$	$B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{o}$	\checkmark	\checkmark	\checkmark	
$\cos(2\alpha)$	$B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{o}$	\checkmark	\checkmark	\checkmark	
$\sin(\gamma)$	$B_s \rightarrow D_s K^-$	\checkmark	\checkmark		\checkmark
$\sin(\gamma)$	$B^o \rightarrow D^o K^-$	\checkmark	\checkmark		
$\sin(2\chi)$	$B_s \rightarrow J/\psi \eta', J/\psi \eta$		\checkmark	\checkmark	\checkmark
$\sin(2\beta)$	$B^o \rightarrow J/\psi K_s$				
$\cos(2\beta)$	$B^o \rightarrow J/\psi K^o, K^o \rightarrow \pi \ell \nu$		\checkmark		
X_{S}	$B_s \rightarrow D_s \pi^-$	\checkmark	\checkmark		\checkmark
$\Delta\Gamma$ for B_s	$B_s \rightarrow J/\psi \eta', K^+K^-, D_s \pi^-$	\checkmark	\checkmark	\checkmark	\checkmark

CDF measures $B_s^{\circ} \rightarrow D_s^{+} \pi^{-}$ needed for B_s mixing

$$\frac{\mathbf{f}_{\mathrm{S}}B(\overline{\mathbf{B}}_{\mathrm{S}}^{\mathrm{o}} \to \mathbf{D}_{\mathrm{S}}^{+}\pi^{-})}{\mathbf{f}_{\mathrm{d}}B(\overline{\mathbf{B}}_{\mathrm{d}}^{\mathrm{o}} \to \mathbf{D}^{+}\pi^{-})} = 0.42 \pm 0.11 \pm 0.11_{-0.07}^{+0.06}$$

• For
$$f_s/f_d = 0.27 \pm 0.03$$
, $B(B_s)/B(B_d) = 1.6 \pm 0.3$

BTeV & LHCb

- ◆ Dedicated Hadron Collider B experiments
- Tevatron
 BTeV Detector Layout

Toroids

Magnet

Silicon Strips

Straw Tube
Chamber

Chamber

PbWO4

Electromagnetic
Calorimeter

Could find narrow B_s** states

LHC

BTeV & LHCb

- Physics highlights
 - Sensitivity to B_s mixing up to $x_s \sim 80$
 - ◆Large rare decay rates B°→ $K^{*0}\mu^{+}\mu^{-}\sim 2500$ events in 10^{7} s
 - Measurement of γ to $\sim 7^{\circ}$ using $B_s \rightarrow D_s K^-$
 - Measurement of α to ~4° using B° $\rightarrow \rho \pi$ (BTeV)
 - Measurement of χ to ~1° using B° \rightarrow J/ $\psi\eta$ (BTeV)

Conclusions

- ◆ There have been lots of surprises in Heavy Quark Physics, including:
 - ◆Long b Lifetime
 - \bullet B° \overline{B} ° mixing
 - ◆Narrow D_s** states
- ◆ We now expect to find the effects of New Physics in b & c decays!